The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior.

نویسندگان

  • G C Panzica
  • C Viglietti-Panzica
  • J Balthazart
چکیده

About 10 years ago, a sexually differentiated nucleus was identified in the preoptic area (POA) of the Japanese quail in the course of studies analyzing the dimorphic mechanisms involved in the activation of sexual behavior. In this species, males exposed to testosterone copulate while females never show this masculine behavior. The present paper reviews anatomical, neurochemical, and functional data that have been collected since that time about the quail dimorphic nucleus. The medial preoptic nucleus (POM) is significantly larger in adult male than in adult female quail. Its volume is also steroid-sensitive in adulthood: it decreases when circulating levels of testosterone are low (castration, exposure to short-days) and it increases when testosterone levels are high (treatment with testosterone, exposure to long-days). The POM is a necessary and sufficient site of steroid action for the activation of male copulatory behavior. The volumetric difference of the POM results from a difference in the adult hormonal milieu of males and females (activational effect) and is not affected by embryonic treatments that permanently modify sexual behavior (no organizational effects on POM). In contrast, the size of neurons in the dorsolateral part of POM appears to be irreversibly affected by embryonic steroids and this feature is therefore a better correlate of the behavioral sex difference. The POM is characterized by the presence of a wide variety of neurotransmitters, neuropeptides, and receptors. It can, in addition, be specifically distinguished from the surrounding POA by the presence of aromatase-immunoreactive cells, by a high density of alpha 2-adrenergic receptors, and by a dense vasotocinergic innervation. Some of these neurochemical markers of the dimorphic nucleus are themselves modulated by steroids. In particular, the aromatase-immunoreactive cells of the lateral POM appear to be a key target for steroids in the activation of male copulatory behavior. The POM is bidirectionally connected to many brain areas. It receives inputs from a variety of sensory areas and from a number of regulatory areas (e.g., catecholaminergic cell groups). This nucleus also sends outputs to "neurovegetative" centers and to brain regions directly connected to the motor pathways. These connections fully support the role of the POM as an integrative center for the control of male sexual behavior. The available data indicate that there is a high degree of steroid-induced neuronal plasticity in the POM, including changes in neuronal function, in protein synthesis, and in specific inputs. These phenomena can easily be studied in the POM because they are of a large magnitude, they are localized in a specific brain site, and they develop rapidly after exposure to steroids. They are also directly related to a clear functional output, the activation of male sexual behavior. The quail POM therefore constitutes an exceptional model for the analysis of steroid-induced brain plasticity in a functionally relevant context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sexual experience affects reproductive behavior and preoptic androgen receptors in male mice.

Reproductive behavior in male rodents is made up of anticipatory and consummatory elements which are regulated in the brain by sensory systems, reward circuits and hormone signaling. Gonadal steroids play a key role in the regulation of male sexual behavior via steroid receptors in the hypothalamus and preoptic area. Typical patterns of male reproductive behavior have been characterized, howeve...

متن کامل

The parvocellular vasotocin system of Japanese quail: a developmental and adult model for the study of influences of gonadal hormones on sexually differentiated and behaviorally relevant neural circuits.

Vasotocin (VT; the antidiuretic hormone of birds) is synthesized by diencephalic magnocellular neurons projecting to the neurohypophysis. A sexually dimorphic system of VT-immunoreactive (ir) parvocellular elements has been described within the male medial preoptic nucleus (POM) and the nucleus of the stria terminalis, pars medialis (BSTm). VT-ir fibers are present in many diencephalic and extr...

متن کامل

The medial preoptic nucleus receives vasotocinergic inputs in male quail: a tract-tracing and immunocytochemical study.

The sexually dimorphic testosterone-sensitive medial preoptic nucleus (POM) of quail can be identified by the presence of a dense network of vasotocinergic fibers. This innervation is sexually differentiated (present in males only) and testosterone sensitive. The origin of these fibers has never been formally identified although their steroid sensitivity suggests that they originate in parvocel...

متن کامل

Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity.

Studies of eukaryotic gene expression demonstrate the importance of nuclear steroid receptor coactivators in mediating efficient gene transcription. However, little is known about the physiological role of these coactivators in vivo. In Japanese quail, the steroid receptor coactivator-1 (SRC-1) is broadly expressed in steroid-sensitive brain areas that control the expression of male copulatory ...

متن کامل

Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors.

Several studies have suggested dissociations between neural circuits underlying the expression of appetitive (e.g., courtship behavior) and consummatory components (i.e., copulatory behavior) of vertebrate male sexual behavior. The medial preoptic area (mPOA) clearly controls the expression of male copulation but, according to a number of experiments, is not necessarily implicated in the expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in neuroendocrinology

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 1996